
Public-Key Validity Argument

1 Preliminaries

Basic notation. For two integers n < m, we write [n,m] to denote the set {n, n+1, . . . ,m}. When
n = 1, we simply write [m] to denote the set {1, . . . ,m}. For any finite set S, we use x ←R S to
denote the process of sampling an element x ∈ S uniformly at random. Unless specified otherwise,
we use λ to denote the security parameter. We say that an algorithm is efficient if it runs in
probabilistic polynomial time in the length of its input. We say that a function f : N → N is
negligible if f = o(1/nc) for any positive integer c ∈ N. Throughout the exposition, we use poly(·)
and negl(·) to denote any polynomial and negligible functions respectively.

1.1 Discrete Log Relation Assumption

The discrete log relation assumption states that given a number of random group elements in G, no
efficient adversary can find a non-trivial relation on these elements.

Definition 1.1 (Discrete Log Relation). Let G = G(λ) be a group of prime order p. Then the
discrete log relation assumption on G states that for any efficient adversary A and n ≥ 2, there
exists a negligible function negl(λ) such that

Pr
[
A(G1, . . . , Gn)→ a1, . . . , an ∈ Zp : ∃ ai ̸= 0 ∧

∑
i∈[n]

ai ·G = 0
]
= negl(λ),

where G1, . . . , Gn ←R G.

1.2 Rewinding Lemma

To prove security, we make use of the rewinding lemma. For the purpose of this document, we do
not require the rewinding lemma in its full generality and therefore, we rely on the following simple
variant from the work of Boneh et al. [1].

Lemma 1.2 (Rewinding Lemma). Let S, R, and T be finite, non-empty sets, and let X, Y , Y ′, Z,
and Z ′ be mutually independent random variables such that

• X takes values in the set S,
• Y and Y ′ are each uniformly distributed over R,
• Z and Z ′ take values in the set T .

Then for any function f : S ×R× T → {0, 1}, we have

Pr
[
f(X,Y, Z) = 1 ∧ f(X,Y ′, Z ′) = 1 ∧ Y ̸= Y ′] ≥ ε2 − ε/N,

where ε = Pr[f(X,Y, Z) = 1] and N = |R|.

1

2 Zero-Knowledge Argument Definitions

In full generality, zero-knowledge argument systems can be defined with respect to any class of
decidable languages. However, to simplify the presentation, we define argument systems with
respect to CRS-dependent languages. Specifically, let R ⊂ {0, 1}∗×{0, 1}∗×{0, 1}∗ be an efficiently
decidable ternary relation. Then a CRS-dependent language for a string ρ ∈ {0, 1}∗ is defined as

Lρ = {u | ∃ w : (ρ, u, w) ∈ R}.

We generally refer to ρ as the common reference string, u as the instance of the langauge, and w as
the witness for u.

For a class of CRS-dependent languages, an argument system consists of the following algorithms.

Definition 2.1 (Argument System). A non-interactive argument system ΠAS for a CRS-dependent
relation R consists of a tuple of efficient algorithms (Setup,Prove,Verify) with the following syntax:

• Setup(1λ)→ ρ: On input the security parameter λ, the setup algorithm returns a common
reference string ρ.

• P(σ, u, w): The prover P is an interactive algorithm that takes in as input a common reference
string σ, instance u, and witness w. It interacts with the verifier V according to the specification
of the protocol.

• V(σ, u): The verifier V is an interactive algorithm that takes in as input a common reference
string ρ and an instance x. It interacts with the prover P in the protocol and in the end, it
either accepts (returns 1) or rejects (returns 0) the instance x.

We use
〈
P(ρ, u, w),V(ρ, u)

〉
= 1 to denote the event that the verifier V accepts the instance of the

protocol. We use
〈
P(ρ, u, w),V(ρ, u)

〉
→ tr to denote the communication transacript between the

prover P and verifier V during a specific execution of the protocol.

An argument system must satisfy a correctness and two security properties. The correctness property
of an argument system is generally referred to as completeness. It states that if the prover P takes
in as input a valid instance-witness tuple (ρ, u, w) ∈ R and follows the protocol specification, then
it must be able to convince the verifier to accept.

Definition 2.2 (Completeness). Let ΠAS be a proof system for a relation R. Then we say that
ΠAS satisfies perfect completeness if for any (u,w) ∈ R, we have

Pr
[〈
P(ρ, u, w),V(ρ, u)

〉
= 1

]
= 1,

where ρ← Setup(1λ).

The first security property that an argument system must satisfy is soundness, which can be defined
in a number of ways. In this work, we work with computational witness-extended emulation as
presented in Bulletproofs [2].

Definition 2.3 (Soundness [3, 4, 2]). Let ΠAS be a proof system for a relation R. Then we say
that ΠAS satisfies witness-extended emulation soundness if for all deterministic polynomial time P∗,

2

there exists an efficient emulator E such that for all efficient adversaries A = (A1,A2), there exists
a negligible function negl(λ) such that∣∣∣∣∣∣∣∣∣∣

Pr

[
A2(tr) = 1

∣∣∣∣ ρ← Setup(1λ), (u, st)← A1(ρ),
tr←

〈
P∗(ρ, u, st),V(ρ, u)

〉]
−

Pr

A2(tr) = 1 ∧ (tr accepting ⇒ (ρ, u, w) ∈ R)

∣∣∣∣∣∣
ρ← Setup(1λ),
(u, st)← A1(ρ),
(tr, w)← EO(ρ, u)

∣∣∣∣∣∣∣∣∣∣
= negl(λ),

where the oracle is defined as O =
〈
P∗(ρ, u, st),V(ρ, u)

〉
. The oracle O allows the emulator E to

rewind the protocol to a specific point and resume the protocol after reprogramming the verifier
with fresh randomness.

Traditionally, the soundness condition for an argument system of knowledge requires that there
exists an extractor that can use its rewinding capability to extract a valid witness from any accepting
transcript of the protocol that is produced by a dishonest prover P∗. The witness-extended emulation
strengthens this traditional definition by requiring that the extractor (emulator) not only successfully
extracts a valid witness, but also produces (emulates) a valid transcript of the protocol for which
the verifier accepts. The value st in the definition above can be viewed as the internal state of P∗,
which can also be its randomness.

The second security property that we require from an argument system is the zero-knowledge
property. All argument systems that we rely on in the ZK-Token program are public coin protocols
that we ultimately convert into a non-interactive protocol. Therefore, we rely on the standard
zero-knowledge property against honest verifiers.

Definition 2.4 (Zero-Knowledge). Let ΠAS be a proof system for a relation R. Then we say that
ΠAS satisfies honest verifier zero-knowledge if there exists an efficient simulator S such that for all
efficient adversaries A = (A1,A2), we have

Pr

[
(ρ, u, w) ∈ R ∧A1(tr) = 1

∣∣∣∣ ρ← Setup(1λ), (u,w, τ)← A2(ρ),
tr←

〈
P(ρ, u, w),V(ρ, u; τ)

〉]

= Pr

(ρ, u, w) ∈ R ∧A1(tr) = 1

∣∣∣∣∣∣
ρ← Setup(1λ),

(u,w, τ)← A2(ρ),
tr← S(u, τ)

 ,

where ρ is the public coin randomness used by the verifier.

3 Argument System Description

At the start of a public-key validity argument protocol, the prover and verifier have access to a
public key pk = P ∈ G. The prover’s goal in the protocol is to convince the verifier that it knows
a valid secret key sk = s such that P = s−1 ·H for a fixed group element H ∈ G. Formally, the
public-key validity protocol captures the following language:

Lpk-validityH = {u = P ∈ G, w = s ∈ Zp

∣∣ s−1 ·H = P
}
.

The language Lpk-validityH is specified by a group element H ∈ G that defines the ElGamal encryption
and Pedersen commitments. The group element P corresponds to a public key in the twisted

3

ElGamal encryption scheme and the field s corresponds to its secret key. The argument system for
the language is specified as follows:

Prover(x,w) Verifier(x)

y ←R Zp

Y ← y ·H

Y

c←R Zp

c

z ← c · s−1 + ys

z

z ·H ?
= c · P + Y

The public-key validity proof follows a standard sigma protocol structure where the prover first
samples a random field element y. It commits to this element by sending Y = y ·H. Upon receiving
a random challenge c, it provides the verifier with the masked secret key z = c · s−1 + y. Finally,
the verifier tests the relation associated with the public key P using the masked secret key z and
the committed value Y .

The public-key validity argument system above satisfies all the correctness and security properties
that are specified in Section 2. We formally state these properties in the following theorems.

Theorem 3.1 (Completeness). The public-key validity argument satisfies completeness 2.2.

Theorem 3.2 (Soundness). Suppose that G is a prime order group for which the discrete log relation
assumption (Definition 1.1) holds. Then the public-key validity argument satisfies witness-extended
emulation soundness 2.3.

Theorem 3.3 (Zero-Knowledge). The public-key validity argument satisfies perfect honest verifier
zero-knowledge 2.4.

4 Proofs

4.1 Proof of Theorem 3.1

To prove completness, let us fix any valid instance and witness for Lpk-validityH : P ∈ G and s ∈ Zp

such that P = s−1 ·H. Let y and z be any element in Zp and let Y = y ·H in an execution of the
protocol. Then we have

z ·H = (c · s−1 + y) ·H
= c · (s−1H) + (y ·H)

= c · P + y · Y

4

As the algebraic relation that the verifier checks at the end of the protocol holds, the proof is always
accepted. Completness follows.

4.2 Proof of Theorem 3.2

To prove soundness, we construct an emulator E that has oracle access to any malicious prover P∗

and extracts a valid witness by rewinding P∗ and simulating two executions of the protocol with an
honest verifier V.

Let P be an instance of the language Lpk-validityH . We construct an emulator E that uses P∗ to
extract a valid witness as follows:

• The emulator E first executes
〈
P∗(ρ, u, st),V(ρ, u)

〉
to produce a transcript tr = (Y, c, z).

• Then, it rewinds the protocol to the point where the verifier V samples a random c←R Zp. It
programs V with fresh randomness such that V generates a new c′ ←R Zp independently of
the previous execution of the protocol.

• The emulator completes the second execution of
〈
P∗(ρ, u, st),V(ρ, u)

〉
, producing a new

transcript tr = (Y, c′, z′).

• If c− c′ = 0 or z − z′ = 0, then the emulator aborts and returns ⊥. Otherwise, it computes
s−1 ← (z − z′)/(c− c′) and returns s as the witness.

To complete the proof, we first bound the probability that E does not abort at the end of the two
executions of

〈
P∗(ρ, u, st),V(ρ, u)

〉
. Then, we show that if E does not abort, then the extracted

witness s is valid.

Abort probability. The emulator E aborts only when either c = c′ or z = z′, which is dependent
on the probability that P∗ successfully convinces V at the end of the protocol. We note that if P∗

successfully convinces V in both executions of the protocol, then we have

z ·H = c · P + Y,

z′ ·H = c′ · P + Y,

which means that (z − z′) ·H = (c− c′) · P . Since P ̸= 0 is a valid instance of Lpk-validityH , we have
z = z′ precisely when c = c′. Hence, we bound the probability that c = c′ to bound the probability
that E aborts at the end of its simulation.

Let εP∗ be the probability that P∗ successfully convinces V in
〈
P∗(ρ, u, st),V(ρ, u)

〉
. We bound

the probability that c = c′ with εP∗ using the rewinding lemma 1.2. Specifically, let us define the
following random variables:

• Let X be the elements Y in the transcript of an execution of
〈
P∗(ρ, u, st),V(ρ, u)

〉
.

• Let Y and Y ′ be the values c and c′ respectively in the two executions of
〈
P∗(ρ, u, st),V(ρ, u)

〉
.

• Let Z and Z ′ be the values z and z′ respectively in the two executions of
〈
P∗(ρ, u, st),V(ρ, u)

〉
.

• Let f(tr) → {0, 1} be the protocol verification function that returns 1 if tr is an accepting
transcript and 0 otherwise.

5

Then, the rewiding lemma states that

Pr
[
f(X,Y, Z) = 1 ∧ f(X,Y ′, Z ′) = 1 ∧ Y ̸= Y ′] ≥ ε2P∗ − εP∗/p.

By assumption, we have 1/p = negl(λ). Therefore, if εP∗ is non-negligible, then the probability that
E aborts at the end of the two executions of

〈
P∗(ρ, u, st),V(ρ, u)

〉
is non-negligible.

Witness validity. Now assume that the two executions of
〈
P(ρ, u, w),V(ρ, u)

〉
returns two accepting

transcripts tr = (Y, c, z), tr′ = (Y, c′, z′), and that E does not abort and returns s← (z− z′)/(c− c′).
Since tr and tr′ are accepting transcripts, we have

z ·H = c · P + Y,

z′ ·H = c′ · P + Y,

This means that (z − z′) ·H = (c− c′) · P and hence, s−1 ·H = P .
We have shown that if P∗ successfully convinces the verifier V for an instance P with non-

negligible probability, then the emulator E successfully extracts a valid witness s. This completes
the proof of soundness.

4.3 Proof of Theorem 3.3

Fix any element P ∈ G and s ∈ Zp such that P = s−1H. Let tr∗ = (Y, c, z) be any accepting
transcript. By the specification of the protocol, the probability that an honest execution of the
protocol by the prover and the verifier results in the transcript tr∗ is as follows:

Pr
[〈
P(ρ, u, w),V(ρ, u)

〉
→ tr ∧ tr = tr∗

]
= 1/p4.

To prove zero-knowledge, we define a simulator S that produces such distribution without knowledge
of a valid witness s.

S(P):

1. Sample c, z ←R Zp

2. Set Y = z ·H − c · P
3. Return tr = (Y, c, z)

The simulator S returns a transcript that is uniformly random given that

• z ·H = c · P + Y .

As the variable Y is completely determined by c, z, we have

Pr [S(P)→ tr ∧ tr = tr∗] = 1/p4,

for any fixed transcript tr∗. Zero-knowledge follows.

6

References

[1] Boneh, D., Drijvers, M., and Neven, G. Compact multi-signatures for smaller blockchains.
In International Conference on the Theory and Application of Cryptology and Information
Security (2018), Springer, pp. 435–464.

[2] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., and Maxwell, G.
Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy (SP) (2018), IEEE, pp. 315–334.

[3] Groth, J., and Ishai, Y. Sub-linear zero-knowledge argument for correctness of a shuffle. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques
(2008), Springer, pp. 379–396.

[4] Lindell, Y. Parallel coin-tossing and constant-round secure two-party computation. Journal
of Cryptology 16, 3 (2003).

7

	Preliminaries
	Discrete Log Relation Assumption
	Rewinding Lemma

	Zero-Knowledge Argument Definitions
	Argument System Description
	Proofs
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3

