
The Twisted ElGamal Encryption

Throughout this section, we work over an abstract cyclic group (G,+) of prime order p ∈ N. In our
actual implementation, we use the Ristretto group implementation over Curve25519 [2]. Following
the implementation convention, we refer to elements in Zp as scalars and elements in G as points.

1 Pedersen Commitments

Commitment definitions. A commitment scheme is a message encoding algorithm Commit that
has the following syntax:

• Commit(x, r)→ C: On input a scalar message x and a randomly generated “opening” r, the
algorithm returns an encoding C that is generally referred to as a commitment.

A commitment scheme is secure if it satisfies the following two properties:

• Binding : Given a commitment C, it is hard to find two message-opening pairs (x0, r0), (x1, r1)
such that

Commit(x0, r0) = Commit(x1, r1).

• Hiding : As long as an opening r is generated from a proper randomness source, a commitment
C does not reveal any information about the committed message x.

The simplest example of a cryptographic commitment scheme is a scheme that uses a cryptographic
hash function H:

Commit(x, r) = H(x∥r),

where the message x and opening r are arbitrary bit-strings. A cryptographic hash function H is
collision-resistant and therefore, it is hard to find two message-opening pairs (x0, r0) and (x1, r1)
such that H(x0∥r0) = H(x1∥r1). Furthermore, if the opening r is a sufficiently long, then the output
of the hash does not reveal information about x.

Pedersen commitments. Pedersen commitments are defined with respect to two fixed group
elements G,H ∈ G. The commitment algorithm is defined as follows:

• Commit(x, r) → C: On input a scalar message x ∈ Zp and a randomly generated opening
r ∈ Zp, the algorithm returns

C = x ·G+ r ·H ∈ G.

It is well-known that the Pedersen commitment scheme over any cryptographically robust group G
satisfies both the security properties of binding and hiding. We refer to any introductory text on
cryptography for the formal proofs of security.
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2 Twisted ElGamal Encryption

The twisted ElGamal encryption scheme can be viewed as an augmentation of the standard Pedersen
commitment scheme. As in the setting of Pedersen commitments, the twisted ElGamal encryption
is defined with respect to two fixed group elements G,H ∈ G and are specified as follows:

• KeyGen() → (pk, sk): The key generation algorithm generates a random scalar s ←R Zp. It
computes P = s−1 ·H and sets

pk = P, sk = s.

• Encrypt(pk, x) → ct: The encryption algorithm takes in a public key pk = P ∈ G and a
message x ∈ Zp to be encrypted. It samples a random scalar r ←R Zp and then computes the
following computes:

1. Pedersen commitment : C = r ·H + x ·G,

2. Decryption handle: D = r · P .

It returns ct = (C,D).

• Decrypt(sk, ct)→ x: The decryption algorithm takes in a secret key sk = s and a ciphertext
ct = (C,D) as input. It computes

C = C − s ·D ∈ G,

and then solves the discrete log problem to recover x ∈ Zp for which x ·G = P .

Correctness. The correctness of the decryption algorithm can be easily verified. Let pk = P ,
sk = s be a public-secret key pair and let ct = (C = r ·H +x ·G,D = r ·P ) be a properly encrypted
ciphertext of a scalar message x ∈ Zp. Then, a proper decryption of the ciphertext produces:

C − s ·D = (rH + xG)− s · (rP )

= rH + xG− r · (sP )

= rH + xG− rH

= xG

Assuming that the discrete log is solved correctly, the decryption algorithm recovers the original
message x ∈ Zp.

Security. The security of the twisted ElGamal encryption follows from the standard Decision
Diffie-Hellman (DDH) assumption. We refer to [1] for the formal proof of security.

3 Computing Discrete Log.

Let G be a cyclic group of prime order p ∈ N, and let G ∈ G be any fixed point in G generally
referred to as the “generator” for G. Then, any point C ∈ G can be represented as a multiple of G:

x ·G = C.

The discrete log problem is the computational task of recovering x given a generator G and a
target C:
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• Input: generator G ∈ G and target C ∈ G

• Output: x ∈ Zp such that x ·G = C

If C is an arbitrary random element in the group G, then this problem is well-known to be hard to
compute. However, if there is a guarantee that the unique scalar x ∈ Zp for which C = x ·G is a
small number (e.g. 0 ≤ x < 232), then the problem can be solved efficiently.

Suppose that x is a 32-bit number. The simplest way to solve the discrete log problem is to
enumerate through all possible values 0 ≤ x < 232 and test for the relation C = x ·G. Although
this brute-force way of computing discrete log is in the realm of feasibility with modern hardware,
we can solve the problem much more efficiently by relying on the space-time tradeoff. Let xlo, xhi be
two numbers represented by the least and most significant 16-bits of x such that x = xlo + 216 · xhi.
Then the discrete log relation can be represented as

C = x ·G
= (xlo + 216 · xhi) ·G
= xlo ·G︸ ︷︷ ︸

online

+216 · xhi ·G︸ ︷︷ ︸
offline

Using this relation, one can solve the discrete log problem by first computing all possible values of
216 · xhi ·G for xhi = 0, 1, . . . , 216 − 1 and then solving for xlo:

ComputeDiscreteLog(G,C) :

1. Instantiate a look-up table (e.g. HashMap). For xhi = 0, . . . 216 − 1, store the following
key-value pairs

• key: 216 · xhi ·G
• value: xhi

2. For xlo = 0, . . . , 216 − 1, check whether a key C − xlo ·G exists in the look-up table. If it
exists, then take the table entry xhi and return x = xlo + 216 · xhi.

We note that the look-up table in step 1 above is independent of the discrete log target C ∈ G.
Therefore, the look-up table can be pre-computed once offline and can be re-used for multiple
instances of discrete log with a fixed generator G ∈ G. The look-up table stores 216 entries of 16-bit
numbers, which translates to around 130 kilobytes. With this amount of pre-computation, any
discrete log challenge can be solved in a matter of seconds.

We note that the algorithm above divides the 32-bit number x specifically into two 16-bit
numbers xlo and xhi. This choice of numbers is purely for simplicity; the numbers xlo and xhi can
be chosen to be arbitrary ℓlo and ℓhi-bit numbers for which ℓlo + ℓhi = 32. The numbers ℓlo and
ℓhi define a space-time trade-off in computing the discrete log problem. For instance, by setting
ℓlo smaller and ℓhi larger, the discrete log problem can be solved in less than a second with larger
pre-computed data.
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